StoryTitle("caps", "James Watt and the Invention of the Steam Engine") ?>
SubTitle("mixed", "Part 1 of 3") ?>
InitialWords(7, "Until", "smallcaps", "nodropcap", "indent") ?>
a little more than one hundred years ago, the chief power
used in the production of food, clothing, and shelter was hand
power. Cattle and horses were used to cultivate the fields.
Windmills and water wheels were employed to grind corn and wheat.
But most tools and machines were worked by hand.
Men had, for many years, dreamed of a new power which would be more useful than either work animals, sails, windmills, or water wheels. This new power was steam. Yet no one had been able to apply the power of steam so that it would grind corn and wheat, spin and weave cotton and wool, or do any useful thing at all. The man who succeeded in giving to the world this new power was James Watt. Steam now propels ships over the Atlantic in less than a week. It speeds express trains across our continent in ninety hours, and it does a thousand other wonderful and useful things.
SubTitle("smallcaps", "Childhood and Early Education ") ?>Page(8) ?> James Watt was born in 1736, at Greenock, Scotland, not far from Glasgow. His early education was received at home, his mother giving him lessons in reading, and teaching him to draw with pencil and chalk. His father drilled him in arithmetic and encouraged him in the use of tools. When at length James went to school, he did not at first get along well. This was due to illness which often kept him at home for weeks at a time. Still, he always did well in arithmetic and geometry, and after the age of fourteen he made rapid progress in all his studies.
Even as a small boy, James was fond of tinkering with things. This fondness was not always appreciated, as is shown by a remark of an aunt: "James Watt, I never saw such an idle boy; take a book or employ yourself usefully; for the last hour you have not spoken a word, but taken off the lid of that kettle and put it on again, holding now a cup and now a silver spoon over the steam, watching how it rises from the spout, and catching the drops of water it turns into. Are you not ashamed to spend your time in this way?"
Much of his time, as he grew older and stronger, was spent in his father's shop, where supplies for ships were kept, and where ship repairing was done. He had a small forge and also a workbench of his own. Here he fashioned cranes, pulleys, and pumps, and learned to work with different metals and woods. So skillful was he that the men remarked, "James has a fortune at his fingers' ends."
DisplayImagewithCaption("text", "bachman_inventors_zpage009", "The time at last came for choosing a trade. The father had wished James to follow him in his own business. But Page(10) ?> Mr. Watt had recently lost considerable money, and it now seemed best for the youth to choose a trade in which he could use his mechanical talents. So James set out for Glasgow to become an instrument maker.
SubTitle("smallcaps", "Learning Instrument Making") ?>He entered the service of a mechanic who dignified himself with the name of "optician." This mechanic, though the best in Glasgow, was a sort of Jack-of-all-trades, and earned a simple living by mending spectacles, repairing fiddles, and making fishing tackle. Watt was useful enough to his master, but there was little that a skillful boy could learn from such a workman. So he decided to seek a teacher in London.
There were plenty of instrument makers in London, but they were bound together in a guild. A boy wishing to learn the trade must serve from five to seven years. Watt had no desire to bind himself for so long a period. He wished to learn what he needed to know in the shortest possible time; he wanted a "short cut." Master workman after master workman for this reason turned him away. Only after many weeks did he find a master who was willing to take him. For a year's instruction, he paid one hundred dollars and gave the proceeds of his labor. The hours in the London shops were long. "We work," wrote Watt, "to nine o'clock every night, except Saturdays." To relieve his father of the burden of supporting him, he got up early and did extra work. Towards the end of the year he wrote, with no little pride: "I shall be able to get my bread anywhere, as I am now able to work Page(11) ?> as well as most journeymen, though I am not so quick as many."
SubTitle("smallcaps", "Jack-of-all-trades") ?>In order to open a shop of his own, Watt returned to Glasgow. He was opposed in this by the hammermen's guild. The hammermen said that he had not served an apprenticeship and had no right to set up in business. They would have succeeded in keeping him from making a start, had not a friend, a teacher in the University of Glasgow, come to his aid, providing him with a shop in a small room of one of the college buildings.
Watt soon became a Jack-of-all-trades. He cleaned and repaired instruments for the university. Falling into the ways of his first master, he made and sold spectacles and fishing tackle. Though he had no ear for music and scarcely knew one note from another, he turned his hand to making organs. So successful was he, that many "dumb flutes and gouty harps, dislocated violins, and fractured guitars" came to him to be cured of their ills.
All the while, Watt spent his leisure time in reading. The college library was close at hand, so there was no lack of books. Chemistry, mathematics, and mechanics were studied. By learning all he could and by doing everything well, Watt came to be known as a man "who knew much and who could make anything."
SubTitle("smallcaps", "Captured by Steam") ?>Coal and tin mining had for a long time been important industries of Great Britain. Shallow mines were easy to work. Men and women carried out the coal or Page(12 ) ?> tin ore in buckets, by winding stairs. Or a windlass was used, turned by hand or with the aid of a horse. Water was taken out in the same way. As the shallow mines became exhausted, deeper ones were opened. The deeper the mine, the harder it was to lift out the coal or tin ore. Into these deeper mines also came quantities of water, flooding many of them. Unless a machine should be invented which could be run at a small cost, to pump out the water and to hoist the coal or tin, these mines would have to be closed. The need of such a machine led to the invention of the first successful steam engine.
Watt first heard of the steam engine in 1759. The idea captivated him, and he began to read how others had tried to make successful engines. Finding that the best books on steam and "fire engines," as they were then called, were in Italian and German, he took up the study of these languages.
In an Italian book he read about Branca's steam engine, invented in 1629. Branca's engine was little more than a toy, no use being made of it, except to pulverize saltpeter and do other simple things of like sort.
DisplayImagewithCaption("text", "bachman_inventors_zpage012", "In a German book he read about Papin's engine, which was invented in 1690. In Papin's engine steam was admitted into the cylinder. The steam was then allowed to PageSplit(13, "con-", "dense,", "condense,") ?> that is, turn back into water. This formed a vacuum, or space without any air in it, under the piston. The weight of the atmosphere, which is about fourteen pounds to the square inch, on the upper side of the piston, forced it down, and the descending piston raised a weight fastened to the rope. Papin never went further than the making of a model. But his idea of using steam to make a vacuum, and of using the pressure of the atmosphere to force down a piston was applied a few years later with some success by Thomas Newcomen.
DisplayImagewithCaption("text", "bachman_inventors_zpage013", "Newcomen made his first engine in 1705. Although big and awkward, a number were used in England to pump out the water at the mines. But they could not be used in deep mines, as they could lift only six or seven pounds for each square inch of the piston. They worked slowly, making only about fifteen strokes a minute, and they were expensive also, a single engine burning fifteen thousand dollars' worth of coal in a year.