StoryTitle("caps", "The Two Great Sculptors—Water and Ice") ?> SubTitle("mixed", "Part 3 of 4") ?>
You all know the history of the Nile; how, when the rains fall very heavily in March and April in the mountains of Abyssinia, the river comes rushing down and brings with it a load of mud which it spreads out over the Nile valley in Egypt. This annual layer of mud is so thin that it takes a thousand years for it to become 2 or 3 feet thick; but besides that which falls in the valley a great deal is taken to the mouth of the river and there forms new land, making what is called the "Delta" of the Nile. Alexandria, Rosetta, and Damietta, are towns which are all built on land made of Nile mud which was carried down ages and ages ago, and which has now become firm and hard like the rest of the country. Page(128) ?> You will easily remember other deltas mentioned in books, and all these are made of the mud carried down from the land to the sea. The delta of the Ganges and Brahmapootra, in India, is actually as large as the whole of England and Wales, Footnote("58,311 square miles.") ?> and the River Mississippi in America drains such a large tract of country that its delta grows, Mr. Geikie tells us, at the rate of 86 yards in a year.
All this new land laid down in Egypt, in India, in America, and in other places, is the work of water. Even on the Thames you may see mud-banks, as at Gravesend, which are made of earth brought from the interior of England. But at the mouth of the Thames the sea washes up very strongly every tide, and so it carries most of the mud away and prevents a delta growing up there. If you will look about when you are at the seaside, and notice wherever a stream flows down into the sea, you may even see little miniature deltas being formed there, though the sea generally washes them away again in a few hours, unless the place is well sheltered.
This, then, is what becomes of the earth carried down by rivers. Either on plains, or in lakes, or in the sea, it falls down to form new land. But what becomes of the dissolved chalk and other substances? We have seen that a great deal of it is used by river and sea animals to Page(129) ?> build their shells and skeletons, and some of it is left on the surface of the ground by springs when the water evaporates. It is this carbonate of lime which forms a hard crust over anything upon which it may happen to be deposited, and then these things are called "petrified."
But it is in the caves and hollows of the earth that this dissolved matter is built up into the most beautiful forms. If you have ever been to Buxton in Derbyshire, you will probably have visited a cavern called Poole's Cavern, not far from there, which when you enter it looks as if it were built up entirely of rods of beautiful transparent white glass, hanging from the ceiling, from the walls, or rising up from the floor. In this cavern, and many others like it, water comes dripping through the roof, and as it falls slowly drop by drop it leaves behind a little of the carbonate of lime it has brought out of the rocks. This carbonate of lime forms itself into a thin, white film on the roof, often making a complete circle, and then, as the water drips from it day by day, it goes on growing and growing till it forms a long needle-shaped or tube-shaped rod, hanging like an icicle. These rods are called stalactites, and they are so beautiful, as their minute crystals glisten when a light is taken into the cavern, that one of them near Tenby is called the "Fairy Chamber." Meanwhile, the water which drips on to the floor also leaves some PageSplit(130, "car-", "bonate", "carbonate") ?> of lime where it falls, and this forms a pillar, growing up towards the roof, and often the hanging stalactites and the rising pillars (called stalagmites) meet in the middle and form one column. And thus we see that underground, as well as above ground, water moulds beautiful forms in the crust of the earth. At Adelsberg, near Trieste, there is a magnificent stalactite grotto made of a number of chambers one following another, with a river flowing through them; and the famous Mammoth Cave of Kentucky, more than ten miles long, is another example of these wonderful limestone caverns.
But we have not yet spoken of the sea, and this surely is not idle in altering the shape of the land. Even the waves themselves in a storm wash against the cliffs and bring down stones and pieces of rock on to the shore below. And they help to make cracks and holes in the cliffs, for as they dash with force against them they compress the air which lies in the joints of the stone and cause it to force the rock apart, and so larger cracks are made and the cliff is ready to crumble.
It is, however, the stones and sand and pieces of rock lying at the foot of the cliff which are most active in wearing it away. Have you never watched the waves breaking upon a beach in a heavy storm? How they catch up the stones Page(131) ?> and hurl them down again, grinding them against each other! At high tide in such a storm these stones are thrown against the foot of the cliff, and each blow does something towards knocking away part of the rock, till at last, after many storms, the cliff is undermined and large pieces fall down. These pieces are in their turn ground down to pebbles which serve to batter against the remaining rock.
Professor Geikie tells us that the waves beat in a storm against the Bell Rock Lighthouse with as much force as if you dashed a weight of 3 tons against every square inch of the rock, and Stevenson found stones of 2 tons' weight which had been thrown during storms right over the ledge of the lighthouse. Think what force there must be in waves which can lift up such a rock and throw it, and such force as this beats upon our sea-coasts and eats away the land.
Opposite is a sketch on the shores of Arbroath which I made some years ago. You will not find it difficult to picture to yourselves how the sea has eaten away these cliffs till some of the strongest pieces which have resisted the waves stand out by themselves in the sea. That cave in the left-hand corner ends in a narrow dark passage from which you come out on the other side of the rocks into another bay. Such caves as these are made chiefly by the force of the waves and the air, bringing down pieces of rock from Page(132) ?> under the cliff and so making a cavity, and then as the waves roll these pieces over and over and grind them against the sides, the hole is made larger. There are many places on the English coast where large pieces of the road are destroyed by the crumbling down of cliffs when they have been undermined by caverns such as these.
DisplayImagewithCaption("text", "zpage132", "Thus, you see, the whole of the beautiful scenery of the sea—the shores, the steep cliffs, the quiet bays, the creeks and caverns—are all the work of the "sculptor" water; and he works best where the rocks are hardest, for there they offer him a good stout wall to batter, whereas in places where the ground is soft it washes down into a gradual gentle slope, and so the waves come flowing smoothly in and have no power to eat away the shore.
Page(133) ?> And now, what has Ice got to do with the sculpturing of the land? First, we must remember how much the frost does in breaking up the ground. The farmers know this, and always plough after a frost, because the moisture, freezing in the ground, has broken up the clods, and done half their work for them.
But this is not the chief work of ice. You will remember how we learned in our last lecture that snow, when it falls on the mountains, gradually slides down into the valleys, and is pressed together by the gathering snow behind until it becomes moulded into a solid river of ice. In Greenland and in Norway there are enormous ice-rivers or glaciers, and even in Switzerland some of them are very large. The Aletsch glacier, in the Alps, is fifteen miles long, and some are even longer than this. They move very slowly—on an average about 20 to 27 inches in the centre, and 13 to 19 inches at the sides every twenty-four hours, in summer and autumn. How they move, we cannot stop to discuss now; but if you will take a slab of thin ice and rest it upon its two ends only, you can prove to yourself that ice does bend, for in a few hours you will find that its own weight has drawn it down in the centre so as to form a curve. This will help you to picture to yourselves how glaciers can adapt themselves to the windings of the valley, creeping slowly onwards until they come down to a point Page(134) ?> where the air is warm enough to melt them, and then the ice flows away in a stream of water. It is very curious to see the number of little rills running down the great masses of ice at the glacier's mouth, bringing down with them gravel, and every now and then a large stone, which falls splashing into the stream below. If you look at the glacier in the Frontispiece, you will see that these stones come from those long lines of stones and boulders stretching along the sides and centre of the glacier. It is easy to understand where the stones at the side come from; for we have seen that damp and frost cause pieces to break off the surface of the rocks, and it is natural that these pieces should roll down the steep sides of the mountains on to the glacier. But the middle now requires some explanation. Look to the back of the picture, and you will see that this line of stones is made of two side rows, which come from the valleys above. Two glaciers, you see, have there joined into one, and so made a heap of stones all along their line of junction.
These stones are being continually, though slowly, conveyed by the glacier, from all the mountains along its sides, down to the place where it melts. Here it lets them fall, and they are gradually piled up till they form great walls of stone, which are called moraines. Some of the moraines left by the larger glaciers of olden Page(135) ?> time, in the country near Turin, form high hills, rising up even to 1500 feet.